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ABSTRACT
Motivation: Transcription regulation involves binding of
transcription factors to sequence-specific sites and con-
trolling the expression of nearby genes. Given binding site
models, one can scan the regulatory regions for putative
binding sites and construct a genome-wide regulatory
network. Several recent works demonstrated the impor-
tance of modeling dependencies between positions in the
binding site. The challenge is to evaluate the statistical
significance of binding sites using these models.
Results: We present a general, accurate and efficient
method for this task, applicable to any probabilistic
binding site and background models. We demonstrate the
accuracy of the method on synthetic and real-life data.
Availability: The algorithm used to compute the statistical
significance of putative binding sites scores is available
online at http://compbio.cs.huji.ac.il/CIS/
Contact: E-mail : nir@cs.huji.ac.il

INTRODUCTION
Accurate detection of cis-regulatory elements in long
DNA sequences is a central challenge in modern biology,
as it offers a direct way for elucidating transcription
regulation. Extensive efforts have been put in gathering
known transcription factor binding sites, and in finding
models that characterize them. These models facilitate
systematic scans of genomic sequences to identify targets
of transcription factors.

A fundamental challenge when performing such a
genome-wide scan is to improve the model’s accuracy
in target prediction, and reduce the number of errors.
This problem is further emphasized in eukaryotic genomes
where binding sites appear in large intergenic regions. As a
consequence, there is high probability of finding spurious
binding sites due to the immense number of subsequences
evaluated. To control the amount of this false positive
noise in the predictions, we assign each possible site a
score, and estimate its statistical significance, i.e. how
likely it is to see a score that is at least as good by chance.

Formally, the p-value of a score S is the probability of
achieving this score or higher according to the background

distribution:

IEPBG(X)[1 {Score(X) ≥ S}]
where 1{} is the indicator function, PBG(X) is the
background distribution over a random variable X that
ranges over possible DNA motifs, and Score is the score
function. A common score is the log odds between the
motif probability according to the binding site model, and
its probability according to a background model.

A simple estimate of the p-value of a score S is by
sampling from PBG(X), and then computing the fraction
of samples that have score as high as S. Such a naive
sampling procedure can reliably estimate p-values that are
at least two orders of magnitude larger than the inverse
of the number of samples. Thus, to estimate p-value of
10−3 we need about 105 samples. This is a problem when
scanning long sequences where we need to compensate
for multiple testing (Benjamini and Hochberg , 1995).
Assuming a typical promoter length of size 500bp, these
corrections result in the need for estimating p-values in
the order of 10−5 or lower, rendering the naive sampling
approach almost impractical, with at least 107 samples.

More sophisticated approaches either analytically derive
the p-value (Wu et al., 2000; Huang et al., 2004), or
use large deviation approximation (Bailey and Gribskov ,
1998). These are effective for probabilistic profile models
(also known as PWMs) that assume independence between
nucleotides at different binding site positions.

Recently, several works demonstrated the importance of
modeling transcription factor binding sites using richer
probabilistic models that allow for inner-dependencies
within the positions of a binding site (Barash et al., 2003;
King and Roth, 2003; Zhou and Liu, 2004). As these
works show, by using such dependency models one can
improve the accuracy of binding site identification. Yet,
the question of assigning p-values for putative binding
sites when using such dependency models remains open.
Specifically, analytical methods that are designed for
PWMs are not applicable for such richer models.

We present a general, accurate and efficient method for
estimating p-values. Our Compound Importance Sampling
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Fig. 1. Illustration of a proposal distribution Q(X). The top panel
shows the sequence logos ranging from the binding site model (left) to the
background model (right), where the information content of each position
is low. The bottom panel shows histograms of the p-value distributions of
samples generated from each component.

(CIS) algorithm uses importance sampling (Gelman et al.,
1995), which allows us to conceptually mimic the naive
sampling approximation using a significantly smaller
number of samples. CIS does not require simplifying
assumptions on the models for either the binding site or the
background. We demonstrate the accuracy and efficiency
of the CIS method on synthetic and real-life data, both for
the case of simple position-independent models and for
models that allow dependencies, where standard methods
cannot be applied.

COMPOUND IMPORTANCE SAMPLING (CIS)
In the naive sampling approach we approximate the
expectation IEPBG(X)[1 {Score(X) ≥ S}], by computing
the fraction of samples where Score(X) ≥ S. Sampling
directly from PBG leads to a poor estimate of small p-
values, since for most samples 1 {Score(X) ≥ S} = 0.
This suggests sampling values of X that have higher
scores. In doing so, we have to make sure that we are still
computing their correct p-values with respect to PBG.

Importance sampling (e.g. Gelman et al. (1995)) is
a general method that estimates IEP (X)[f(X)] using
samples from a proposal distribution Q(X). The method
relies on the following equality

IEP (X)[f(X)] = IEQ(X)[f(X)w(X)]

where the weight w(x) = P (x)

Q(x)
compensates for the bias

introduced by sampling from Q.
To apply this scheme for estimating the p-values, we

need to choose an effective proposal distribution Q. For
the log-odds score, and most other scores, values of X
sampled from the binding site model are more likely to

receive high scores. Naively, we can set Q to be the
distribution PM (X) of the binding site model, and directly
sample from the region of high scores. This, however, is
problematic since having low scoring samples is critical
for the correct estimation of the p-values.

One possible solution is to sample a mixture of n1

samples from PM and n2 samples from PBG. While
this solution takes into account both extremes, it still
suffers from poor estimation of the “middle-ground”
scores (results not shown). Thus, we refine the above
approach and consider a richer combination of L models.
We define Compound Importance Sampling (CIS) as:

Q(X) =
L∑

i=0

miQi(X)

where mi is the fraction of samples generated from each
model Qi.

These models are basically “smoothed” versions of PM

that bias it in different degrees toward PBG. In the case
of PWMs, this is achieved by averaging the probabilities
at each position between PM and PBG. In the general
case, “smoothing” is done by averaging according to the
dependency structure (for lack of space we omit further
details). It is important to note, that this is not equivalent
to mixing samples from the two extreme distributions. See
Figure 1 (top) for an illustration of a proposal distribution.
Figure 1 (bottom) illustrates a histogram of the p-value
distribution from different components of the proposal
distribution.

Finally, we have to decide on the number of components
as well as the number of samples and degree of smooth-
ing for each component. In this work we use 10 compo-
nents and exponentially decay both the smoothing factor
and number of samples starting from 10,000 samples for
PBG(X) and 1000 samples for PM (X). Our CIS method
proved robust to a large range of these settings (experi-
ments not shown).

EXPERIMENTAL VALIDATION
As a case study, we examine the TRANSFAC 7.3 (Win-
gender et al., 2001) model of RAP1 in S. cerevisiae,
which is 14bp long. We generated 106 subsequences from
a 3rd-order Markov background model of S. cerevisiae.
We computed the score of every site, and estimated its
p-value using the following methods: CIS algorithm using
40,822 samples from a proposal distribution as illustrated
in Figure 1; the MAST method (Bailey and Gribskov ,
1998); functional approximation by Normal distribution,
where we estimate the mean and variance of Score(X)
according to PBG(X), and then use the tail probability of
Gaussian distribution as the p-value estimate. As a proxy
to the truth, we computed the empirical p-values from
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Fig. 2. Comparison of p-value estimations for binding site scores using
Naive sampling (106 samples), the Normal approximation, MAST, and our
CIS method (40,822 samples). The p-value (y-axis) is shown as a function
of the log-odds score (x-axis). (a) For TRANSFAC position independent
model of RAP1; (b) Same as (a), zoomed on p-values < 10−4; (c) For the
dependency model of PHO4 learned by Barash et al. (2003) (here MAST is
not applicable); (d) Test for robustness with 10 repeats of (c).

the subsequences described above. Figure 2(a) compares
the p-value estimates by the different methods. While
all methods appear the same, zooming into the region of
interest in Figure 2(b) reveals significant discrepancies.
It is evident that the Normal approximation is inaccurate
in this region. Both CIS and MAST provide accurate
estimations, with a slight advantage of the CIS method.

Figure 2(c) shows evaluation of p-values for a binding
site model with dependencies between positions learned
by Barash et al. (2003) for the PHO4 transcription factor.
For models such as this MAST is not applicable. As we
can see, CIS’s estimation are similar to the empirical
ones. One might suspect that the slight deviation observed
between the two is due to the smaller number of samples
used by CIS. As Figure 2(d) shows, when comparing
ten repetitions of the procedure, it is evident that CIS is
more robust than the naive sampling, using two orders of
magnitude less samples.

So far we showed the effectiveness of CIS with respect
to the background distribution directly. We conclude by
demonstrating our approach on a real-life genome-wide
scan. We used the dependency binding site model of the
ZAP1 transcription factor (Barash et al., 2003) to scan the
promoter regions of all genes in S. cerevisiae excluding
those shown to be targets of ZAP1 by Lee et al. (2002). We
thus expect that this set of promoters will contain few real
binding sites of ZAP1. Again we use a 3rd-order Markov
model as a background distribution. Figure 3 shows that
in this setting too, the Normal approximation results in
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Fig. 3. Comparison of predicted
and empirical p-values for a genome-
wide scan of S. cerevisiae using the
ZAP1 dependency model (Barash et
al., 2003), with a 3rd-order Markov
background model. p-value estima-
tions using the Normal approximation
and the CIS method are shown.

poor p-value estimates. More importantly, the CIS method
provides very accurate estimations over a wide range of
p-values.

DISCUSSION
In this work we introduced a general and efficient method
for estimating the statistical significance of putative bind-
ing sites in genome-wide scans. We demonstrated the ac-
curacy of the method on both synthetic and genomic data,
using simple as well as rich probabilistic models.

Given a motif model, another way to improve the
statistical significance in a genome-wide scan is to use
a more accurate background model. Since this issue
holds crucial importance, we plan to explore methods for
learning better background models in the future.

To our knowledge, this is the first method of its kind
that can be applied to any probabilistic form of the binding
site as well as background models. Its general framework
makes it applicable for the identification of other sequence
motifs, such as splice junctions, protein motifs, etc.
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